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Conventional wisdom suggests that solar generation reduces emissions by displacing fossil
fuels but, because of its variability, might undermine electricity reliability. Using plausibly
exogenous spatial and temporal variation in solar irradiance, I find that while this holds for
the US, where solar replaces fossil fuel generation one-for-one, in India, solar generation
instead leads to an energy expansion, easing shortages that cause power outages. Solar
does not contemporaneously displace nonsolar generation one-for-one in India, and solar
generation over a given past week increases current nonsolar generation and, in turn, total
generation. This result is driven by the accumulation of coal stocks at power plants in India,
where coal shortages drive power outages. When solar fulfills a greater share of demand,
power plants need less coal, which allows residual stocks to build up. These stocks are drawn
down in subsequent days to increase generation, improving reliability. I apply machine
learning techniques to predict outages using daily night-time lights data and find that solar
generation reduces the share of pixels under outage. Hence, solar delivers a low-carbon
energy expansion and improves reliability in India but does not necessarily cut emissions
from existing fossil fuel sources.
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1. Introduction

Solar power has grown rapidly over the past decade in both developed and developing
countries. With a global annual rate of growth in installed capacity of 23%, it plays a
key role in decarbonizing the power sector — the largest contributor to global emissions.
In developed countries, solar reduces emissions by displacing fossil fuels but may also
reduce reliability. Since solar generates electricity only when the sun shines, backup sources
must quickly adjust to fluctuations in supply to prevent power outages. Thus, the rapid
growth of solar power has also come with concerns about its impacts on electricity reliability.

However, in developing countries such as India, solar power may not displace fossil fuels
and may instead expand energy supply, easing the shortages that cause power outages.
Indian households face an average of 4 hours of outages per day ; the corresponding figure
for American households is 5.5 hours per year (Agrawal et al. 2022; US Energy Information
Administration 2024). These outages stem from conditions specific to developing countries,
where supply shortages persist and large electricity subsidies undermine infrastructure
investment (McRae 2015). While electricity utilities in developed countries must meet all
retail demand, utilities in India may ration supply and induce power outages during supply
shortages or when fuel procurement costs are too high (Burlig and Preonas 2024; Burgess
et al. 2020). By providing additional electricity supply, solar power might buffer against
these shortages and improve reliability.

This paper studies how solar generation affects electricity reliability in India through
its short-run effects on nonsolar generation. The response of nonsolar generation to solar
generation determines both emissions and reliability. If solar displaces nonsolar generation,
emissions fall because nonsolar sources are primarily fossil-fuel based but total supply
remains unchanged. This relationship underpins the conventional view of solar power as
advancing the energy transition, which I find holds for the United States, where power out-
ages are rare. Conversely, for India, where outages are frequent, I find that solar generation
does not displace nonsolar generation. Emissions from existing fossil fuel sources therefore
remain unchanged, but total supply increases, reducing shortages. Solar power thus has
distinct implications for the energy transition in developed and developing countries. In
India, it delivers a low-carbon energy expansion that improves reliability but does not
necessarily reduce emissions from existing fossil-fuel generation.

I estimate utility-scale solar generation at power plants as a function of their installed
capacity and solar irradiance to examine how variation in solar generation affects nonso-
lar generation, coal stocks and deliveries, and night-time lights (NTL). Changes in solar
generation arise from spatial and temporal variation in irradiance across plants, interacted
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with variation in installed solar plant capacity. I isolate the variation that is driven by
plausibly exogenous solar irradiance and examine its contemporaneous and intertemporal
effects: The contemporaneous effects capture how solar displaces nonsolar generation in
meeting electricity demand, whereas the lagged effects capture intertemporal responses of
fuel shortages to solar generation.

Conventional wisdom suggests that solar generation displaces nonsolar generation; I
begin my analysis by showing this to be true for the US. In New England, solar generation
affects nonsolar generation only contemporaneously: Current solar displaces nonsolar gener-
ation nearly one-for-one, whereas solar generation over the previous week has no significant
effects on current nonsolar generation. This result supports two observations. First, it con-
firms the assumption that in markets without unmet demand, solar generation substitutes
(predominantly fossil fuel–based) nonsolar generation, implying a decrease in emissions.
Second, the result provides a benchmark for the effects of solar in a developed-country
setting not subject to outages. Distinct effects of solar generation in developing-country
settings would then reflect determinants unique to those settings. In India, solar generation
does not contemporaneously displace nonsolar generation, and lagged solar generation
increases current nonsolar generation. An increase of one megawatt-hour (MWh) in solar
generation on the previous day increases current nonsolar generation by approximately 0.2
MWh, increasing total generation.

What explains the contrast in the contemporaneous and lagged impacts of solar gen-
eration in the US and India? A key distinction is reliability. A few days of lagged solar
generation affects current nonsolar generation because India is prone to coal shortages:
Solar power provides a buffer for coal stocks to build up at fuel-constrained power plants.
Indian power plants typically maintain only a few days’ worth of coal reserves. On average,
powerplants in India hold approximately 16 days’ coal stock vs. 116 days’ stock at US
powerplants.1 Several factors contribute to these shortages: India’s state-owned non-profit-
maximizing coal production monopoly has struggled to meet rising electricity demand,
plants have limited financial ability to stockpile reserves, and transport bottlenecks limit
timely coal deliveries.

Several results establish coal stock accumulation as the key mechanism behind the
lagged effects of solar generation. I find that by reducing contemporaneous coal consumption,
solar power increases the net stocks of coal available over the following day, which are
drawn down on subsequent days through increased coal generation. While coal consumption

1India’s stock levels estimated from daily stock levels and coal consumption data from Central Electricity
Authority’s Daily Coal Reports. US’ stock levels for the same period estimated from the Energy Information
Administration’s Days of Burn by Coal Rank data.
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responds to solar generation, coal deliveries do not see a significant effect, reinforcing that
there is intertemporal reallocation of coal.

As another piece of evidence supporting this mechanism, I show that the effects are
driven by coal-constrained power plants. If easing the pressure on coal is the mechanism
driving the lagged results, then we would expect plants whose constraint is more binding
to respond more strongly than the less constrained. I classify plants based on how often
they declare coal shortages, either through plant outages because of insufficient coal or
critical stock flags raised in daily reports. I find that shortage-prone plants — which are
more coal-constrained — exhibit stronger effects in response to solar generation.

I construct a measure of reliability using satellite NTL data to validate that solar gener-
ation improves electricity reliability in India. To detect outages, I train a random forest
algorithm on outage readings from electricity supply monitors matched to the corresponding
NTL pixels. I then apply this algorithm to classify outages in daily NTL data for the full
period of analysis. I find that solar generation leads to a small but significant decline in the
share of pixels under outage at the state level in India. While modest, this effect — derived
on the basis of the most direct available measure of electricity reliability — confirms the
causal chain that goes from increased solar production to increased nonsolar generation to
reduced outages.

Related Literature. This paper’s main contribution is to show that in India, solar
power leads to an energy expansion, easing constraints and improving reliability. This raises
an important distinction relative to the impacts of solar power in developed countries such
as the US, where it reduces emissions but has raised concerns around maintaining grid
reliability as incremental variable solar power is integrated.

Prior work shows that the distinctive features of developing countries’ electricity markets
affect infrastructure, investment, and reliability. Widespread electricity theft and large,
politically sensitive electricity subsidies strain the finances of electricity utilities, incentivize
rationing, and foster corruption (Gertler et al. 2017; Burgess et al. 2020; Jha et al. 2023;
Mahadevan 2024). Such a policy environment undermines electricity reliability, discourages
infrastructure investment, and distorts power procurement (McRae 2015; Pathak 2020;
Ryan 2022; Jha et al. 2023). I show that solar power can ease some of these constraints.
The reliability improvements from solar supply have important implications. Several studies
show that poor reliability hurts firm revenue and productivity, undermines economic growth,
and lowers household welfare (Chakravorty et al. 2014; Allcott et al. 2016; Cole et al. 2018;
Fried and Lagakos 2023; Cisse 2025).
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In addition, I contribute to the literature on the economic and environmental impacts
of solar power and its intermittency. This is the first paper to show that the net effects of
solar power on emissions and reliability depend on the market structure and underlying
grid operations in a developing-country context. Baker et al. (2013) note that economic
analyses of solar power, particularly for the US, must consider three things: first, that the
fuel (sunlight) is free; second, that increases in solar capacity displace fossil-fuel generation,
thereby reducing both costs and emissions; and third, that the intermittency of solar power
makes supply unreliable. This paper shows that economic analyses of solar power in India
must also account for energy expansion and the resulting reliability gains. Other studies
have sought to quantify the effects of intermittency by estimating the costs of building
backup generation (Gowrisankaran et al. 2016; Joskow 2019; Butters et al. 2025). This
paper shows that in India, solar solves a more immediate generation issue: inadequate
supply to meet existing — much less rising — electricity demand.

Finally, I contribute by developing a novel, high-frequency reliability measure from
publicly available NTL data. The standard reliability metrics that track grid interruptions
typically reported by utilities — namely, the system average interruption duration index
(SAIDI) and system average interruption frequency index (SAIFI) — are of limited reach,
incomplete, and of low frequency (Klugman et al. 2023). Alternative attempts to develop
measures through self-reports, surveys, or smartphone data (Klugman et al. 2014), although
reasonable, have proved expensive and require systematic data collection. In contrast, NTL
data provide a low-cost, frequent, and globally available proxy. Starting with Henderson
et al. (2012), several papers have used NTL as a proxy for economic outcomes, including
economic growth and electrification (Min et al. 2024; Walter and Moneke 2024; Mahadevan
2024; Burlig and Preonas 2024). However, this paper is one of the first to use NTL data to
measure electricity reliability. Min et al. (2017) identify outage-prone areas by detecting
excess fluctuations in radiance annually and Dugoua et al. (2022) detect outages by ap-
plying ML methods to monthly NTL data. Mann et al. (2016) is the only other paper to
analyze NTL data at a daily level to predict outages. I further develop this measure and
expand its application, filling a critical methodological gap for studying blackouts worldwide.

The rest of this paper is organized as follows. I describe the context of coal shortages and
electricity reliability that shapes the effects of solar generation in India in Section 2. Section
3 presents a conceptual framework for how the impacts of solar on nonsolar generation
determine emissions and reliability. Section 4 describes the data. Section 5 presents the
empirical strategy using solar irradiance as a source of plausibly exogenous variation. Section
6 presents the estimates of the causal impacts of solar on nonsolar generation, coal stocks,
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and electricity reliability. Section 8 concludes.

2. Background

2.1. Electricity Generation and Blackouts in India

There are three main causes of blackouts in India: technical failures, electricity rationing,
and fuel shortages. Technical failures occur when the power system fails to balance supply
and demand, often because of faults in transmission and distribution. Electricity rationing
is specific to developing countries, where utilities limit supply to reduce financial losses
from subsidized electricity tariffs and theft. (Burgess et al. 2020; Jha et al. 2023). Shortages
occur when there is not enough fuel to meet electricity demand.

This paper focuses on the third cause: fuel shortages that prevent power plants from
meeting electricity demand. India’s electricity generation is coal intensive, with coal supply-
ing about 75% of all generation in 2024-2025 (NITI Aayog 2025). When coal stocks run
low, power plants are forced to ration fuel, which may lead to blackouts. For example, in
October 2021, about 86% power plants reported critically low stocks, leading to widespread
outages across India. Some states experienced up to 14 hours of outages per day (John
Kemp 2021; Ellis-Petersen 2021). On average, about 10% of power plants have critically
low coal stocks each day, and about 2% declare outages due to fuel shortages.2

2.2. Coal Shortages in India

The chronic coal shortages at Indian power plants stem from three inefficiencies in the
coal market: The state monopoly does not produce enough coal, power plants have neither
the incentives nor the financial resources to stockpile excess reserves, and transportation
bottlenecks limit timely deliveries.

The output of the state’s coal monopoly has failed to keep pace with growing demand
in India’s coal-intensive electricity sector. Coal India Limited (CIL), a publicly owned,
non-profit-maximizing enterprise, produces approximately 75% of domestic coal, while other
public sector companies account for another 20%.3 The power sector consumes 90% of
all domestically produced coal. To keep electricity affordable for retail customers, state
producers keep domestic coal prices inefficiently low (Tongia et al. 2020). As a result, the
non-profit-maximizing state monopoly has had consistently low output and suffered from

2Estimated from Daily Coal Reports and Daily Generation Reports data by the Central Electricity
Authority (CEA) following the methodology described in the Daily Coal Reports.

3Based on calculations from data reported on the NITI Aayog India Climate and Energy Dashboard. In
2023–2024, CIL produced 774 million tonnes (MT) of coal,the other public sector companies 219 MTs, and
the private sector 48 MT. Out of 964 MT of consumption, the power sector consumed 860 MT.
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legacy issues such as obsolete mining practices and technology and lengthy permitting
processes (Tongia and Sehgal 2019). On average, domestic production has fallen below
target by at least 50 MT each year.4 Although imported coal does bridge some of this gap, it
is an order of magnitude more expensive than domestic coal and incurs high transportation
costs (Tongia and Sehgal 2019).5

Past attempts to increase private participation in the coal sector have failed because of
corruption and judicial intervention. In 1993, the Indian government tried to increase private
participation by allocating individual coal mines to power generators and industrial users
with specific use cases (Pathak 2020; Tongia et al. 2020). However, the Supreme Court struck
down these allocations in 2014, citing a lack of transparency in the allocation structure.
While subsequent auctions followed, only a fraction of the initial set of mines have been
successfully reallocated, and there has been limited private sector expansion. As of 2018,
CIL operated approximately 400 mines, while other public and private firms operated fewer
than 20, such that the state monopoly on coal production persists today (Tongia et al. 2020).

Power plants thus face chronic coal shortages and operate on limited stock. They are
required to maintain 12–26 days’ worth of coal, depending on their distance from mines,
but many fall short of even these minimum thresholds. On average, power plants in In-
dia hold approximately 16 days of stock. For comparison, US coal plants hold 116 days’
average stock.6 Jha (2023) notes that coal-fired plants very rarely run out of coal in the
US; in contrast, approximately 10% of Indian plants face critically low coal stocks each day.7

Plants’ ability to stockpile large amounts of coal is limited because they are finan-
cially constrained. Plants sign fuel supply agreements (FSAs) with coal producers, CIL,
to purchase a fixed quantity of coal. FSAs impose penalties if the plants fail to purchase
or CIL fails to deliver the contracted quantity of coal (Tongia et al. 2020).8 However,
many plants are financially constrained by payment delays from perennially bankrupt
state-owned utilities (Ryan 2022). These utilities often face liquidity shortages because they
sell electricity at subsidized rates but government reimbursements are frequently delayed.
CIL, in turn, often requires advance payment.

4Shortfall estimated from targets and actual production figures in the Ministry of Coal’s Annual Reports.
5Vanamali (2022) estimates imported coal to be five times more expensive than domestic coal on average,

whereas Tongia et al. (2020) estimate that on energy equivalence basis, domestic coal prices have been
lower by up to 90% than international coal prices.

6Estimated days of stock for India calculated using daily stock and consumption reported in the Central
Electricity Authority’s Daily Coal Reports. Days of stock data for the US are reported by the US Energy
Information Administration (EIA).

7Estimated based on critical coal stock triggers reported in Ministry of Coal’s Daily Coal Reports.
8There have been proposals to reduce the penalties on CIL for nondelivery. In addition, force majeure

provisions allow CIL to avoid penalties in case of contingencies.
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Mines
Power plants

figure 1. Coal Mines and Plants in India, Scaled by Capacity

Data from Global Energy Monitor. This map includes all operational mines and power plants as of May
2025, scaled by their capacity.

The length and congestion of coal supply chains worsens shortages. Roughly 70% of
all coal consumed in India is transported by train, and coal accounts for about 40% of all
freight traffic on Indian Railways (Tongia et al. 2020). Figure 1 shows the location of mines
in the east and power plants throughout India. Coal must travel about 500 kilometers (310
miles) on average, mostly by rail, from mines located predominantly in eastern India to
plants throughout the country.9 These rail corridors tend to be heavily congested, creating
bottlenecks that prevent timely coal deliveries. Gupta et al. (2020) estimate that by 2030,
railway bottlenecks will be responsible for 15% of the coal shortages in India.

9National Rail Plan, India, 2020.
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3. Conceptual Framework

In developed countries, all electricity demand is met, and utilities’ wholesale demand curve
is inelastic. Increases in solar generation in such a setting displace nonsolar generation and
reduce emissions, but there is no change in how much electricity demand is met. In contrast,
utilities’ wholesale demand curve in developing countries such as India is downward sloping
(Jha et al. 2023), and high costs lead to unmet demand. In such a setting, the effect of solar
on total demand met, emissions, and reliability is ambiguous and depends on how nonsolar
generation responds to changes in solar generation.

3.1. Developed Countries: Inelastic Wholesale Demand Curve

Power outages are rare in developed countries such as the US, where regulatory mandates
require electricity utilities to meet all retail demand, such that their wholesale demand curve
is inelastic.10 Utilities purchase electricity from generators and sell it to retail customers.
Figure 2 depicts utilities’ inelastic wholesale demand curve DWS and the supply curve
of power generators S . Retail demand from downstream consumers, which utilities are
required to serve, is denoted by Q∗. Since retail consumers face fixed electricity tariffs
in the short run, their demand is exogenous to the changes in wholesale prices faced by
electricity utilities. Utilities therefore take retail demand as given and purchase power from
generators to meet retail demand Q∗.11

When zero-marginal-cost solar generation is added to the power mix, it shifts out the
supply curve from S to S ′ as in Figure 2(b). Since the wholesale demand curve is inelastic,
total demand met remains fixed at Q = Q∗. Solar displaces QS units of nonsolar generation
in the power supply, most of which is fossil-fuel based. As a result, less fossil fuel is burned,
and emissions decline, with no change in how much electricity demand is met (Q ′ = Q∗).

3.2. India: Downward-Sloping Wholesale Demand Curve

In contrast with the inelastic wholesale demand curve so far, utilities’ wholesale demand
curve in developing countries such as India is elastic and downward sloping (Jha et al.
2023). Indian utilities are not required to meet all demand at all times, and power outages
are common because of the factors outlined in Section 2, such as theft and high electricity
subsidies. Q∗ in Figure 3 denotes the hypothetical retail demand that would be met if there

10Note the distinction between the wholesale demand curve and the retail demand curve. In this section,
I focus on the wholesale demand curve of electricity utilities when they purchase electricity from power
generators. This is different from what we typically think of as retail demand curves when retail consumers
purchase electricity from utilities.

11The representation of the wholesale power markets in Figures 2 and 3 is stylized and abstracts from
several features of the respective electricity markets, including differing renewables subsidies, capacity
markets, power purchase contracts, and other details of modern grid optimization.
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figure 3. Wholesale Electricity Supply and Demand in India

were no outages. However, actual electricity supplied Q is often less that the total demand
Q∗ in the presence of outages. This gap between the potential demand and demand actually
met is illustrated in Figure 3 by Q∗ −Q , in contrast to Figure 2, where supply always meets
demand, or Q∗ −Q = 0.

When solar power increases electricity supply in this setting by shifting the supply
curve from S to S ′, it does not necessarily displace nonsolar. The net effect depends on how
nonsolar generation responds to incremental solar supply. If solar simply displaces nonsolar
generation, as it does in Figure 2, the demand met will remain constant at Q , there would
be no change in outages (Q∗ −Q), and emissions will decline because nonsolar generation is
predominantly coal-based in India. On the other hand, if solar power adds to total supply
instead of displacing it as illustrated in Figure 3, the electricity supplied increases from
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Q to Q ′, and outages decrease from Q∗−Q to Q∗−Q ′. However, emissions remain unchanged.

I study how solar affects nonsolar generation and the corresponding impacts on electricity
reliability, as reflected by the difference between retail demand Q∗ and demand met Q in
Figure 3. The prediction from Figure 2 is clear for the developed-country setting. However,
this simple framework has demonstrated how solar power might not displace fossil-fuel
based power in developing countries, where shortages are common.

4. Data

I estimate solar generation at utility-scale power plants using data on their location, capacity
and daily solar irradiance received. To compile data on nonsolar generation and mechanisms
driving the effects through coal stocks in India, I web-scrape and digitize daily electricity
reports published by Indian electricity authorities. I compile comparable data for ISO New
England in the US to benchmark my results.

4.1. Indian Electricity Data

I compile a rich daily dataset covering electricity generation by fuel type and total elec-
tricity consumption in each state, generation at all nonrenewable powerplants in India,
and stock levels at each coal plant for 2019–2025. I web-scrape and digitize data from four
sources: the Daily Grid Reports published by the Grid Controller of India and the Daily
Generation Reports, Daily Coal Reports, and Daily Renewable Reports published by the
Central Electricity Authority (CEA).

The Daily Generation Reports include data on coal, natural gas, hydro, and nuclear
power plants. As of 2025, India had 472 gigawatts (GW) of installed power capacity,
approximately one-third of the total installed capacity in the US.12 At the same time,
India generated approximately 2000 terrawatt-hours (TWh) of electricity in 2024, about
half as much as the US.13 These ratios suggests that India has less idle capacity than the US.

Table 1 displays summary statistics for electricity generation in India. The top panel
reports statistics in levels, and the bottom panel reports shares. Installed capacity and Solar
farm capacity refer to total and utility-scale solar power generating capacity, respectively.
Approximately 7% of all installed capacity is solar on average over the whole time period.
When power plants are temporarily taken out of operation, they are declared as being

12India had 472,468 MW of installed electricity capacity according to the CEA’s April 2025 Monthly
Installed Capacity Report ; the US had 1,189,492 MW of installed electricity capacity as of the July 16, 2024,
according to the Electricity Explained update by the US EIA.

13Source: Ember Energy Yearly Electricity Data.
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table 1. Summary Statistics at State-Day Level

mean sd min max count
Installed Capacity (MW) 11676 9352 48 65240 59580
Solar Farm Capacity (MW) 2091 3465 0 47329 59580
Outage Capacity (MW) 3255 3427 0 26461 59580
Generation (MWh) 6363 5531 0 38799 59580
Solar Generation (MWh) 456 807 0 7908 59580
Solar Irradiance (kwh/m2) 4.93 1.38 0 8.34 59580
Generation/Capacity 0.50 0.21 0 1.22 59580
Outage Capacity/Capacity 0.28 0.20 0 1.00 59580
Solar Farms/Capacity 0.07 0.07 0 0.54 59580
Solar Generation/Generation 0.10 0.21 0 1.00 59573

Summary statistics at the state–day level for India from 2019 to 2025. Installed capacity denotes total
nonsolar power plant capacity. Solar farm capacity denotes utility-scale solar power plants. Outage capacity
refers to the plant capacity under outage on any given day. Generation denotes electricity generation per
hour. Solar irradiance is the total solar radiation received on the given day.

under outage in the Daily Generation Reports.14 Generation refers to how much electricity
is generated at plants. On average, approximately a quarter of the power plants in a given
state are under outage, and half of capacity is utilized for generation, leaving little idle
capacity to manage shocks to demand.

4.2. US (ISO-New England) Electricity Generation Data

I use results for New England to benchmark for the impacts of solar generation in a
developed-country setting with no outages. In India, grid operations are managed at state
level, whereas in the US, balancing authorities oversee power dispatch and transmission
across control areas, which may span multiple states (Cicala 2022). To establish a benchmark
comparable to Indian states, I focus on the ISO New England (ISO-NE) power control area,
which has a balanced mix of renewable and nonrenewable sources of energy and considerable
variation in solar irradiance. ISO-NE manages electricity markets in Connecticut, Rhode
Island, Massachusetts, Vermont, New Hampshire, and most of Maine. I use the US EIA-930
reports and operations reports released by ISO-NE to compile data on daily electricity
generation by fuel type. As of January 2024, ISO-NE had approximately 8 GW of solar
power capacity, and solar accounted for about 4% of its electricity generation (ISO New
England 2025).

14Plant outages may occur because of maintenance, fuel shortages, technical failures, or rationing.
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4.3. Solar Farms

I compile data on the location and capacity of utility-scale solar farms in India and the
US to estimate daily solar generation at these plants. The Global Energy Monitor (GEM)
maintains an annual dataset of utility-scale solar farms with capacities of 1 MW or more.15

It compiles information from government sources, power companies, news reports, and
other databases to build a comprehensive record. I use the GEM dataset to obtain the
start date, operating status, and installed capacity of solar farms in India and the US for
2018–2025. As of 2025, GEM reported that India had 83.36 GW of installed solar farm
capacity, closely matching the 82.39 GW reported by the Ministry of New and Renewable
Energy.16 Installed solar capacity has expanded rapidly in India, increasing nearly threefold
from 29 GW in 2018 to 84 GW in 2025.17Figure 4 maps solar farms across India in 2025,
with each dot representing a farm and scaled by its installed capacity. India has a rich solar
resource, and solar farms are distributed throughout the country, particularly in the west,
which receives high solar irradiance.

4.4. Weather Data

Solar irradiance measures the amount of solar radiation that reaches a horizontal plane at
the surface of the earth.18 I use the ERA5 reanalysis dataset from the European Centre for
Medium-Range Weather Forecasts to compile total daily solar irradiance received at the
grid point nearest to each solar farm. I then use these values to estimate daily electricity
generation at each farm. Figure 5 shows daily solar irradiance across all solar farms in
India for a random day. By capturing solar irradiance at the precise location of each farm,
I leverage within-state local variation in solar irradiance. This also allows me to disentangle
the supply and demand-side impacts of solar irradiance. Solar generation is driven by the
local irradiance at power plants, whereas I use population-weighted average solar irradiance
in a state to control for its demand-side impacts.

To control for weather-related impacts on electricity consumption, I compile state-level
data on temperature and solar irradiance for 2018 to 2025, again using the ERA5 reanalysis
dataset. These data cover both India and the U.S. (New England region) at an hourly
resolution and 31 km spatial scale (0.28 degrees). I aggregate the data to the daily level
by adding up the total solar irradiance received on each date and calculating the average

15The 1 MW threshold for generation capacity is consistent with what would be considered utility-scale
solar. For example, the US EIA defines utility-scale generation as that from power plants with at least 1
MW of electricity-generating capacity.

16Data from the Ministry of New and Renewable Energy’s April 2025 Physical Achievements Report.
17Author calculations based on the GEM dataset.
18This is the mean surface downward short-wave radiation flux variable in the ERA5 reanalysis dataset.

This includes both direct and diffuse radiation.
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figure 4. Utility-Scale Solar Farms in India, 2025

Source for plant locations and sizes: Global Energy Monitor. Source for the shapefile: Database of Global
Administrative Areas (GADM). Each dot represents a utility-scale solar farm and is scaled by the installed
capacity size of the solar farm.

daily wet-bulb temperature.19 I apply district-level population weights using population
data from the Indian Census to account for population exposure to the weather when I
aggregate to state level.

4.5. Night-time Lights Data

While total electricity generation provides an indirect proxy for electricity reliability, satellite
NTL data offer a more direct measure of electricity reliability. I compile daily luminos-
ity data from the Visible Infrared Imaging Radiometer Suite (VIIRS) sensors onboard
the Suomi National Polar-orbiting Partnership (SNPP) satellite. These data are publicly
available through Google Earth Engine and sourced from the National Aeronautics and

19I estimate the approximate wet-bulb temperature by Twetbulb = 2
3Tdr ybulb + 1

3Tdew point . I then take
the daily average as Td,avg = Td,max+Td,min

2 for each day d .
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figure 5. Irradiance at Solar Power Plants in India on January 1, 2025

Source for power plant locations and sizes: Global Energy Monitor. Source for irradiance: ERA5 Reanalysis
Dataset. Source for the shapefile: GADM. Each dot represents a solar power plant and is scaled by its
installed capacity; dot colors represent the total solar irradiance received at the point closest to the respective
power plants on January 1, 2025.

Space Administration (NASA).20 The series is corrected for biases from moonlight, aerosols,
surface reflectance, and seasonal variation. It reports daily radiance values captured around
1:30 a.m. local time at a 500-meter spatial resolution, allowing high-frequency tracking of
light activity across regions.

NTL can capture outages through two mechanisms. First, if the outages coincide with
SNPP satellite overpass time, then night lights directly capture outages through lights
being turned off. Second, outages earlier in the day might affect lights at night through
persistence in lighting behavior. For example, if blackouts occur in the evening, consumers

20I use the VNP46A2 product, which is the short-name for the VIIRS/NPP Gap-Filled Lunar BRDF-
Adjusted Nighttime Lights Daily L3 Global 500m Linear Lat Lon Grid product.
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may not turn on lights before going to sleep that would otherwise remain on overnight,
resulting in lower observed radiance during the overpass of the satellite. Mann et al. (2016)
show that there may be persistence in lighting behavior during the day. Using household
voltage meters to validate NTL-based outage detection in Maharashtra, India, the authors
find that reliability estimates using NTL data are representative of daytime reliability.

To construct and validate my NTL measure of daily power outages, I use high-frequency
electricity monitor readings of outages from the Electricity Supply Monitoring Initiative
(ESMI) by the Prayas Energy Group (2021). This dataset includes minute-level voltage
readings from 2014-2018 for 528 monitors installed in domestic and commercial locations
across 22 states in India. Figure A5 shows the location of all the monitors and Table A6
reports summary statistics on the outages captured by the monitors and corresponding
NTL values. The monitors in villages capture approximately 5 hours of outages per day and
the urban monitors capture about 24 minutes of outages per day, on average. Appendix C
describes the construction of the NTL and monitor readings data.

5. Empirical Strategy

I estimate solar generation at power plants as a function of their installed capacity and irradi-
ance received to examine how variation in solar generation — driven by plausibly exogenous
changes in solar irradiance — affects nonsolar generation. I examine contemporaneous
impacts to assess whether solar displaces fossil-fuel generation in meeting electricity demand
and lagged effects to capture intertemporal responses through coal stock accumulation.

5.1. Estimating Electricity Generation at Solar Plants

I estimate electricity generation at a solar plant p in year y on day t using Equation (1), as
a function of its installed capacity (capacityp y ) in year y and the solar irradiance received
at the grid point closest to the power plant (irradiancep yt ).21,22 Next, I aggregate solar
generation to the state level for India and the ISO-NE region level for the US because
electricity operations and reporting occur at these levels. SolarGenerations yt in Equation

21Installed capacity represents the maximum electricity a plant can generate per hour under ideal
conditions, typically measured using a “peak-sun hour" (Lozanova 2025). A peak-sun hour corresponds to
1000 watt-hours of solar irradiance per square meter (Wh/m2) (Hyder 2024). Given this, the total daily
flux or irradiance (in Wh/m2, divided by 1,000) received per day yields the total number of peak-sun hours.
With this definition, electricity generation at solar plant p on day t in year y is calculated as shown in
Equation (1), where ca pacit y py denotes the plant’s installed capacity and irradiancepyt represents total
peak-sun hours.

22Unobserved, time-invariant factors, such as the tilt angle of solar panels or their maintenance, affect
how efficiently solar panels convert irradiance into electricity output. However, these time-invariant factors
do not affect the daily variation in solar generation, which this paper leverages. Further, because these
inefficiencies reduce output, my estimates solar generation represent an upper bound, which implies that
the estimated effects of solar power may be biased toward zero and the true impacts larger than estimated.
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(a) US (b) India

figure 6. Estimated vs. Actual Solar Generation

Solar generation estimated as a function of the plant’s installed capacity and solar irradiance. Installed
capacity data are from the Global Energy Monitor, and irradiance data are compiled from the ERA5
reanalysis dataset. Actual solar generation data for the US are from ISO New England’s operation reports
and for India from the CEA’s Daily Renewable Reports. The black line indicates the 45-degree line.

(2) represents daily solar electricity generation in state s in year y on day t . This is the
unit of analysis for most of the empirical analysis that follows.

Solar Generationp yt = Ca pacit y p y × irradiancep yt(1)

Solar Generations yt =
Ps

∑
p∈Ps

Solar Generationp yt(2)

Figure 6 shows that the estimated solar generation closely aligns with the reported
generation for both ISO New England and India. he x -axis plots the estimated values
calculated with Equations (1) and (2), and the y-axis plots the actual solar generation
reported by government entities. The black 45-degree line provides a reference for perfect
correlation between the estimated and actual solar generation. The correlation is 0.9 for New
England and 0.93 for India. While I have data on actual solar generation, I choose to use the
estimated generation to credibly isolate plausibly exogenous variation in solar irradiance.
Further, reported values may be affected by solar curtailment or may be incomplete.23

Relying on estimated generation mitigates these concerns about the reported data and
yields comparable values for India and the US to allow a valid assessment. However, my use

23Lowe (2024) discusses the range of solar photovoltaic generation sources in ISO-NE and how the
visibility of these sources to ISO-NE varies with size and function.
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of estimated solar generation might introduce attenuation bias. In Appendices B and D, I
show that this bias is minimal and the results are similar whether I use actual or estimated
generation. Appendix B shows the results with actual solar generation and Appendix D
the results when I instrument actual with estimated solar generation.

5.2. Effects of Solar Generation

Regression (3) estimates how daily variation in solar generation, driven by changes in solar
irradiance, affects nonsolar electricity generation Ys yt in state s in year y on day t . Solar
generation may influence nonsolar electricity generation contemporaneously by displacing
it in electricity supply or intertemporally by affecting coal stocks and fuel availability.
The coefficient β0 captures the marginal contemporaneous effect of a 1 MWh increase in
solar generation. If solar entirely displaces nonsolar generation, total generation remains
unchanged, and β0 = −1. β j for each j ∈ (1, 7) captures how daily solar generation over
each day (t − j ) within the last week affects current nonsolar generation. If there are no
fuel shortages and the only channel through which solar affects nonsolar generation is
contemporaneous displacement as in Figure 2, then β j ≈ 0 for each j ∈ (1, 7). On the other
hand, nonzero values of β j indicate that solar affects nonsolar generation in ways beyond
contemporaneous displacement in electricity supply.

Ys yt = α +β0 solar_generations yt +
7
∑
j=1
β j solar_generations y ,t− j + κ′Xs yt + ρs y + δym + εs yt

(3)

Solar generation depends on the stock of installed solar capacity and the flow of irra-
diance received by the installed solar panels as in Equation (1). While how much solar
capacity is installed may be endogenous to income or electricity demand, solar irradiance
is naturally occurring and plausibly exogenous. Installed capacity varies annually across
states, and solar irradiance varies daily across solar plants within a state (in my data).
The state–year fixed effects (ρs y ) hold the stock of installed capacity constant. Then,
any changes in daily solar generation are driven by changes in plausibly exogenous solar
irradiance.

The thought experiment is analogous to a differences-in-differences strategy: Differences
in solar irradiance affect nonsolar generation differently depending on the installed solar
capacity in the state. The comparison analyzes how high and low solar irradiance affects
nonsolar generation for states with high and low levels of solar capacity. Figure 5 shows
the spatial variation in solar irradiance across power plants on a single day; the temporal
variation comes from variation in solar irradiance across days. Combining these together,
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identification comes from a comparison of how changes in solar generation, driven by
changes in plausibly exogenous solar irradiance and weighted by installed solar capacity,
affect nonsolar generation.

This strategy assumes that all capacity additions occur on the first day of the year of
installation. While capacity is added throughout the year, the share of new additions within
a year is limited. Nonetheless, solar generation from some power plants may be counted
before they begin operating, overstating solar generation earlier in the year. This would
bias the coefficients toward zero, making any estimated effects a lower bound on the true
effect of solar generation.

Year–month fixed effects (δym) control for seasonal variation in both solar generation
and electricity demand, and the vector Xst y includes controls for demand-side determi-
nants of electricity, including temperature, average solar irradiance, and a dummy for
whether date t is a weekend. The temperature and irradiance variables are constructed as
population-weighted state–day averages to capture population exposure to weather changes.
Population-weighted temperature variables help control for cooling and heating effects
on electricity consumption. The population-weighted irradiance variable controls for any
demand-side impacts of daily irradiance, which might affect how warm people feel (beyond
temperature effects), and for hours of sunlight, which in turn affects when people turn on
their lights and consume electricity.

To capture nonlinear temperature effects, I include both cooling degree days (CDDs)
and heating degree days (HDDs), along with a dummy for whether each day qualifies
as a CDD or an HDD. This specification allows both intercepts and slopes to vary by
temperature regime. CDDs, HDDs, and the associated dummies are included for the current
day and the last seven days. I also include both contemporaneous and lagged values for the
weather variables for a given past week. The contemporaneous weather variables account
for real-time demand impacts, whereas the lags control for any persistence in consumption
or changes in residual coal stocks from lagged consumption. I cluster the standard errors at
the state–year level because solar capacity varies at this level, which also defines the level
of treatment.

6. Results

In the US, solar generation almost completely displaces non-solar generation in the current
period but has no lasting effects on future nonsolar generation. In India, by contrast, solar
generation does not fully displace nonsolar generation, and solar output over a given past
week increases current nonsolar generation.
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6.1. Impacts of Solar Generation in the US (ISO-NE)

In contrast to India, the US and other developed countries do not face chronic supply
shortages or power outages, making them useful for benchmarking the effects of solar
generation in a setting with no outages. To develop a benchmark, I analyze the impacts of
solar generation in ISO-NE since it offers credible data and substantial variation in solar
generation. Figure 7 shows the estimated coefficients from Equation (3), representing the
effects of a 1 MWh increase in current and lagged solar generation on current nonsolar
electricity generation. Appendix Table A1 reports the coefficients denoted in Figure 7.
Figure A1 shows that the results are similar when I use actual instead of estimated solar
generation.24

An additional MWh of solar generation reduces contemporaneous nonsolar electricity
generation by 0.99 MWh, implying near-perfect one-for-one displacement. Since most nonso-
lar generation in ISO-NE comes from fossil fuels, particularly the generation at the margin in
the merit-order curve, this displacement reduces contemporaneous emissions. The marginal
output emissions rate in New England is 923 lbs of carbon dioxide (CO2) (≈ 0.5 tons) per
MWh (US EPA 2025). This suggests that each MWh of solar generation in the US prevents
approximately 0.5 tons of CO2 emissions. In 2024, solar power produced approximately
4,554 GWh in ISO-NE, which would imply emissions reductions of approximately 2.3 million
tons of CO2.25 Solar generation over the last week, however, has no statistically significant
impact on current nonsolar electricity generation in ISO-NE, as seen in Figure 7.

6.2. Impacts of Solar Generation in India

In India, contemporaneous solar generation does not fully displace nonsolar generation,
while lagged solar generation increases current nonsolar generation. This effect is driven
by intertemporal reallocation of coal generation: Solar reduces coal generation contempo-
raneously, but as power plants build up excess stocks, they increase their coal generation
over subsequent days. Total generation thus increases, improving reliability by increasing
demand met. However, because coal generation does not decline overall, solar generation

24The standard errors are larger with estimated solar generation, as expected given that the estimated
data are noisier. When I consider actual solar generation, the coefficient for the contemporaneous effects is
closer to –1.5, while for estimated generation, it is –1. The latter is biased toward zero because estimated
solar generation is an upper bound, reflecting generation under ideal settings, while actual solar generation
is typically lower. The coefficient on actual solar generation is greater than -1 because of omitted variable
bias from rooftop solar: Utility-scale and rooftop solar are positively correlated, whereas rooftop solar and
nonsolar generation are negatively correlated because rooftop solar meets part of the electricity demand
otherwise met by nonsolar generation.

25Note that this back-of-the envelope calculation is confined to emissions within ISO-NE and abstracts
from emissions outside the region, which might be affected by a reduction in emissions through solar
generation, for example, through policy linkages outside the ISO-NE jurisdiction such as the The Regional
Greenhouse Gas Initiative cap-and-trade program.
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figure 7. Impacts of Solar Generation on Nonsolar Generation in the US

This figure plots the coefficients of daily solar generation from t − 7 days to the current day t on current
nonsolar generation on day t for ISO-NE. The regression includes year–month fixed effects and current and
lagged controls for average irradiance, cooling degree days, heating degree days, and dummies for whether
it is a cooling degree day or a heating degree day. I cluster the standard errors by year–month because I
have only one region across 6 years.

does not reduce emissions, at least in the one-week time frame of this analysis.

6.2.1. Comparing India and the US

Solar generation has distinct impacts in outage-prone India and the no-outage US setting:
An increase in lagged solar generation in India increases current nonsolar generation, and
contemporaneous solar generation does not completely displace nonsolar generation. I next
run Equation (3) for India as I did for the US in Figure 7.26 Figure 8 displays the estimated
coefficients for India alongside the US coefficients from Figure 7. Although in the US solar
power reduces emissions by displacing fossil-fuel generation, there is no evidence in my
data that solar generation reduces fossil-fuel-based generation in India. Further, the lagged

26Note that since the US analysis is restricted to ISO-NE, it includes only year fixed effects. However,
since the Indian analysis covers the whole country, with its multiple states, the specification for India
includes state–year fixed effects. Further, since the US analysis is focused on only one region over 6 years, I
cluster those results at the year–month level to allow enough clusters. However, I cluster the results for
India at the level of a state–year since that is the unit of treatment.
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figure 8. Impacts of Solar Generation on Nonsolar Generation in India and the US

This figure plots the coefficients of the effects of daily solar generation from t − 7 days to the current day
t on current nonsolar generation on day t for ISO-NE in the US and in India. The regressions include
year–month fixed effects and current and lagged controls for average irradiance, cooling degree days, heating
degree days, and dummies for whether it is a cooling degree day or a heating degree day. The regression for
India also includes state–year fixed effects, whereas the regression for ISO-NE includes year fixed effects
since covers only one region. The regression for India is clustered at the state–year level, whereas the
regression for the US is clustered at the year–month.

effects follow a clear pattern: Solar generation on the previous day has the strongest impact
on current nonsolar generation, and this effect weakens over time, which suggests short-term
effects of past solar generation on current nonsolar output.

Appendix Table A2 reports the coefficients from Figure 8. Figure A2 shows that the
results are similar when I consider actual instead of estimated solar generation. Figure A3
shows similar results when the outcome is the quantity of wholesale electricity purchased,
which is the outcome measure in Jha et al. (2023).

This suggests that solar generation in India affects nonsolar electricity supply through
determinants not present in the US. While in the US, solar generation displaces nonsolar
generation contemporaneously, India shows no contemporaneous effect but significant lagged
effects. What might drive this divergence? Since I control for demand-side variation using
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weather and fixed effects, the explanation likely lies on the supply side. As I discussed in
the background section, a key supply-side distinction is that India faces outage-inducing
coal supply shortages, a constraint that solar supply alleviates

6.2.2. Plant-Level Results

The analysis so far has focused on the effects of solar on nonsolar generation. To better
understand what drives the distinct lagged effects, I turn to a more granular, power plant–
level analysis, as specified in Equation (4). The outcome is electricity generation at plant p
in state s in year y on day t . I run this regression separately for nonsolar fuels, including
coal, gas, and hydropower.

Analyzing generation at the plant level allows me to control for time-invariant opera-
tional priorities and decision-making specific to each power plant. I include power plant
fixed effects (αp to control for unobserved operational decisions and local constraints at
the plant level, along with all other controls stated in Equation (3). This approach also
enables heterogeneity analysis to isolate the mechanisms behind the aggregate results.

I begin by replicating the analysis from Section 6.2.1 at the plant level, disaggregating
by fuel type. I then extend the analysis to examine coal stocks, deliveries, and heterogeneity
using the more granular power plant–level data. The level of treatment remains defined
at the state–day level since the effects of solar generation propagate through state-level
aggregates. Accordingly, standard errors continue to be clustered at the state–year level.

Yps yt = α0 +β0 solar_generations yt +
7
∑
j=1
β j solar_generations y ,t− j

+ κ′Xs yt +αp + ρs y + δym + εp yst(4)

Figure 9 shows the plant-level results for coal, natural gas, and hydro, respectively, with
coefficient estimates also reported in Appendix Table A4. Coal accounts for approximately
73% of electricity supply in India, while 8% comes from hydropower, and 2% from oil
and gas.27 Coal is the primary fuel of interest. As is clear from Figure 9, the effects of
solar generation on total generation in Figure 8 for India are driven by its effects on coal
generation.

Solar generation reallocates coal generation intertemporally: It decreases contempora-
neous coal generation but increases future coal generation. One additional MWh of solar

27Solar generation accounts for an additional 8%, nuclear for 3%, wind for 5%, and biofuels for the
remaining 1%. Data from the NITI Aayog Climate and Energy Dashboard.
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generation in a state reduces contemporaneous electricity generation at the average coal
power plant by 0.01 MWh or 10 KWh. This magnitude is smaller than what we see in
Figure 8 because this analysis now focuses on individual plant-level generation instead of
aggregate generation.28 Less electricity generation implies less coal use, which increases
residual coal stocks.

The positive coefficients for the effect of of lagged solar generation on current coal
generation imply that excess coal stocks from the previous week are used over subsequent
days, increasing coal generation by the power plants. The sum of the coefficients on current
and lagged solar electricity generation (β1 +∑t−1

j=t−7β j ) is not statistically different from
zero for coal-fired power plants. This rules out a net change in coal generation and suggests
that solar generation does not displace coal generation overall but rather shifts it across
time. In turn, total electricity generation rises, increasing electricity demand met and
improving reliability. However, emissions from existing coal generation do not fall.

Other fuels play a smaller role in India’s electricity mix and show limited effects in
response to solar generation. Natural gas generation accounts for a low share of India’s
electricity supply and is not subject to fuel shortages, in contrast to coal generation, so
we see no significant effects of solar on gas generation. Hydropower, by contrast, shares
some characteristics with coal, such as storage and fuel availability constraints, but its
response to solar generation is more complex. On one hand, solar generation provides a
buffer for hydro reservoirs to fill up, similarly to how it affects coal generation. On the
other hand, hydropower has low start-up and shut-down times and can be used to manage
fluctuations from solar generation (Das et al. 2020). As a result, hydropower generation
may either decline or increase in response to solar generation, depending on seasonal and
operational conditions. These mixed effects are seen in Figure 9 and Table A4. Further, since
hydropower generation may increase in response to solar generation to manage fluctuations,
the contemporaneous response of total nonsolar generation to solar generation remains
statistically nonsignificant in Figure 8 even though coal generation decreases.

6.3. Mechanisms

Coal power plants accumulate reserves in response to solar generation through two channels:
First, they burn less coal when solar supply meets electricity demand, which increases
residual stocks. Second, they have to fulfill less demand in the future if solar continues to
meet part of the demand, which reduces the buffers plants need to hold to meet future
demand. At the same time, power plants have little incentive to retain excess stocks because

28For comparison, coal power plants generate 5406 MWhs of electricity on average. More details are
reported in Table A4.

23



-.02

-.01

0

.01

.02

G
en

er
at

io
n 

to
da

y, 
M

W
h

Sola
r G

en
era

tio
n (

t-7
)

Sola
r G

en
era

tio
n (

t-6
)

Sola
r G

en
era

tio
n (

t-5
)

Sola
r G

en
era

tio
n (

t-4
)

Sola
r G

en
era

tio
n (

t-3
)

Sola
r G

en
era

tio
n (

t-2
)

Sola
r G

en
era

tio
n (

t-1
)

Sola
r g

en
era

tio
n (

MW)

Coal Hydro Gas

95% confidence intervals

figure 9. Impacts of Solar Generation on Power Plant–level Generation: By Fuel

This figure plots the coefficients of daily solar generation from t − 7 days to the current day t on current
electricity generation on day t at power plants by fuel type. The regression includes year–month, state–year,
and power plant fixed effects and current and lagged controls for average flux, cooling degree days, heating
degree days, and dummies for whether it is a cooling degree day or a heating degree day. Standard errors
are clustered at the state–year level.

they are locked into fuel supply agreements and are cash constrained, which limits how
much coal they can purchase upfront. Thus, power plants run down their excess stocks
and increase their generation, in turn increasing total generation. Several results support
this mechanism. First, an analysis of coal stocks shows that coal consumption declines
contemporaneously in response to solar generation, increasing net stocks on subsequent
days, whereas coal deliveries remain unchanged. Second, heterogeneity analysis shows that
more coal-constrained plants exhibit more pronounced intertemporal coal reallocation.

6.3.1. Change in Coal Stocks

With data on daily coal stocks at plants, I can analyze whether the accumulation of coal
stocks drives the distinct lagged effects of solar generation in India.

opening stockt = opening_stockt−1 − consumptiont−1 + receiptt−1(5)
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table 2. Impacts of Solar Generation on Coal Receipts and Consumption at Power Plants

(1) (2) (3)
Coal generation Coal consumption Coal receipt

VARIABLES MWh tonnes tonnes

Solar generation (MW) -0.02*** -0.29*** -0.08
(0.00) (0.08) (0.20)

Solar Generation (t-1) 0.01 0.07 0.10
(0.01) (0.08) (0.20)

Solar Generation (t-2) 0.01** 0.12** -0.15
(0.00) (0.06) (0.10)

Solar Generation (t-3) 0.01*** 0.20*** -0.05
(0.00) (0.06) (0.11)

Solar Generation (t-4) 0.01** 0.14* 0.13
(0.00) (0.08) (0.13)

Solar Generation (t-5) 0.01* 0.07 0.16
(0.00) (0.05) (0.17)

Solar Generation (t-6) -0.00 -0.05 0.01
(0.00) (0.04) (0.14)

Solar Generation (t-7) 0.00 0.02 0.19
(0.01) (0.11) (0.17)

Observations 194,923 194,923 194,923
R-squared 0.89 0.89 0.72
Dep. var. mean 789 12824 13046
Test lag + current = 0 .22 .26 .15

Robust standard errors in parentheses
*** p<0.01, ** p<0.05, * p<0.1

Regression includes year–month fixed effects, state–year fixed effects, and power plant fixed effects. Controls
include a dummy for whether it is a weekend, current and lagged daily temperature, and average flux for
the past week. Temperature controls include cooling degree days, heating degree days, and a dummy for
whether it is a cooling degree day or a heating degree day. Standard errors are clustered at the state–year
level. Column 1 plots the impacts of solar generation on coal generation at power plants, column 2 on
consumption of coal, and column 3 on deliveries of coal.

The available stock of coal at power plants equals the previous day’s stock minus coal
consumption plus receipts, as shown in Equation (5). To maintain a consistent definition,
I focus on opening stocks of coal, which is the coal available on a given day before con-
sumption occurs. Table 2 reports the coefficients from Equation (4) with coal consumption
and receipts as the outcome variables alongside coal generation. 29 Coal consumption at

29Table 2 shows results for coal plants for only days with complete data on all three variables: coal
consumption, coal receipts, and coal generation. Since for some days consumption and receipt data are
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figure 10. Impacts of Solar Power on Coal Stocks at Power Plants

his figure plots the coefficients of daily solar generation from t − 7 days to the current day t on coal
generation and weekly changes in coal stocks at power plants in India. The regression includes year–month
fixed effects, state–year fixed effects, power plant fixed effects and current and lagged controls for average
irradiance, cooling degree days, heating degree days, and dummies for whether it is a cooling degree day or
a heating degree day. Standard errors are clustered at the state–year level.

power plants responds mechanically to changes in generation. A contemporaneous decrease
in generation reduces coal use, while an increase in coal generation following lagged solar
generation raises coal consumption. Column 3 shows that the change in coal deliveries in
response to solar generation is not statistically significant.

To further examine this mechanism, I analyze weekly changes in coal stocks at coal
power plants in response to solar generation in Figure 10.30 Table A5 reports the coefficients
plotted in Figure 10. I do not estimate a contemporaneous coefficient for the impact of solar
generation on net coal stocks because in keeping with the definition outlined above, coal
stocks reflect the opening stock of fuel in the morning, before that day’s solar generation
occurs. Increase in contemporaneous solar generation decreases coal generation, reducing
coal used and in turn increasing the net stocks of coal available the next day.

missing, the sample size for Table 2 is smaller than in A4.
30∆coal stock = coal stockt − coal stockt−7

26



These results combined with those from Table 2 and the accounting in Equation (5) imply
that an increase in solar generation indeed reduces contemporaneous coal generation and
coal use. As deliveries of coal remain unchanged, excess coal stocks accumulate, increasing
the net stock of coal available. These residual stocks are drawn down over the next few
days to increase coal consumption and coal electricity generation.

6.3.2. Heterogeneity by Severity of Coal Constraints at Power Plants

I compare how solar generation affects generation between more and less coal-constrained
plants. If easing the pressure on coal is the mechanism driving the lagged results, then we
would expect plants whose constraint is more binding to respond more strongly than the
less constrained. I classify power plants by their likelihood of facing coal shortages – more
coal constrained power plants are more likely to face coal shortages. I find that the effects
of solar generation are stronger for the more coal-constrained shortage-prone plants.

Power plants can declare coal shortages in several ways. They may declare outages and
take themselves out of operation if they have insufficient coal. Alternatively, plants with
critical stock levels are flagged in the CEA’s Daily Coal Reports. In 2019, the first year in
my data, I identify every instance of plants declaring coal shortages, either through outages
or critical stock flags. I classify plants above and below the median shortage frequency as
more or less coal constrained, respectively. I restrict the classification to shortages in 2019
to avoid endogeneity with solar generation. Figure A4 shows the distribution of coal stocks
(in days’ supply) across these categories for the full period. More days of stock implies more
buffer stock and less severe constraints. On average, shortage-prone plants hold 15 days of
coal, compared with 21 days for less shortage-prone plants.

Shortage-prone plants are more coal constrained. I estimate Equation (3) separately for
more and less constrained plants and compare the coefficients on solar generation in Figure
11. Both groups reallocate coal in response to solar generation, but the effects are stronger
for the more constrained power plants. Each group shows similar contemporaneous declines
in coal generation, yet the more constrained plants exhibit stronger lagged effects from the
buffer provided by solar generation. This offers further evidence that the distinct lagged
effects of solar generation in India arise from the easing of supply constraints at coal-fired
plants.

6.4. Reliability Measure: Night Lights

Thus far, I have interpreted an increase in total electricity generation as an improvement
in electricity reliability. Next, I look at a more direct measure of electricity reliability:
NTL data. This confirms the causal chain that goes from increased solar generation to
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figure 11. Impacts of Solar Generation on Coal-Constrained Power Plants

This figure plots the coefficients of daily solar electricity generation each day from t − 7 days to the current
day t on generation at more and less coal-constrained power plants in India. More constrained plants had
a greater propensity to declare coal shortages in 2019. The regression includes year–month fixed effects,
state–year fixed effects, power plant fixed effects and current and lagged controls for average irradiance,
cooling degree days, heating degree days, and dummies for whether it is a cooling degree day or a heating
degree day.

increased nonsolar generation to reduced outages. The closest publicly available, frequent,
and measurable proxy for electricity reliability is NTL data. I train a random forest algo-
rithm to classify outages from NTL data, using known, correctly classified observations
from electricity supply monitors matched to the corresponding NTL pixels. I apply this
algorithm to NTL data for the full sample to classify pixels under outage daily in each
state.

For this analysis, I use high-frequency NTL data to capture short-term changes in daily
outages. These data capture reliability in several ways. First, if an outage occurs during
satellite overpass, the affected area will appear dark in the imagery. This is especially
relevant because outages often occur around midnight since disruption to economic activity
is minimal during that time. Second, NTL capture reliability indirectly if daytime outages
affect lighting behavior. Outages earlier in the day may prevent consumers from turning the
lights on, resulting in lights staying off at night. Mann et al. (2016) note that the correlation
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figure 12. Impacts of Solar Generation on Share of Pixels Under Outage

This figure plots the coefficients of daily solar electricity generation each day from t − 7 days to the current
day t on the share of pixels under outage at state level in India. Each pixel is classified as under outage or
not based on a random forest algorithm trained on ground-truth data. The regression includes year–month
fixed effects, state–year fixed effects, power plant fixed effects and current and lagged controls for average
irradiance, cooling degree days, heating degree days, and dummies for whether it is a cooling degree day or
a heating degree day. Standard errors are clustered at the state–year level.

between the frequency of outages during daytime hours and VIIRS overpass times in 0.85.

While the NTL data offer a publicly available and direct measure of reliability, they
cannot capture all reliability improvements. Illumination reflects only one aspect of electric-
ity consumption affected by reliability improvements. Other forms of consumption—such
as industrial production and appliance usage—are visible in the generation data but not in
the NTL data. Approximately 50% of India’s electricity consumption is commercial and
industrial, and another 16% is agricultural, whereas only 1% corresponds to public lighting
(Central Electricity Authority 2024). While commercial, industrial, and domestic use would
include lighting uses, they also include nonlighting uses of electricity. Thus, the effects on
outages estimated by means of the NTL data represent a lower bound on the total impacts
of solar generation on reliability.

I use ML to classify pixels as under outage and construct a measure of electricity
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reliability by estimating the share of pixels under outage (SOPUO) for each state. Improved
reliability correspond to a lower SOPUO. Each NTL pixel has a 500-meter resolution. Using
correctly classified outage data from electricity supply monitors, I train a random forest
algorithm to detect daily outages from NTL. The model uses 35 covariates constructed
from NTL radiance data, including locational and temporal characteristics and residualized
night-time radiance and z-scores across time periods for each pixel and its four nearest
neighbors.31 Appendix C describes the construction and validation of this measure from
minute-wise voltage readings from electricity supply monitors. The algorithm correctly
classifies pixels 79% of the time.32 Figure A6 in Appendix C reports the full classifica-
tion results. The model predicts outages with 78% precision and captures 77% of all outages.

Figure 12 shows the effect of current and lagged solar generation on the SOPUO for
each state. This pattern mirrors the observed contemporaneous increases in generation
(Figure 8). This confirms that the set of results in this paper reflect that solar generation
improves reliability. A 1 MWh increase in solar generation reduces the SOPUO by about
0.003 percentage points. Although small relative to the 41% mean, this is the most direct
evidence that solar generation reduces outages and improves reliability. Further, as noted
above, the NTL data capture only a small share of overall electricity reliability improvements.

While there is a clear contemporaneous negative effect on outages, the lagged effects
are weaker, likely because of the limited ability of NTL data to capture all reliability
improvements. The coefficients on most lags are negative, but very small and statistically
insignificant. These results likely reflect the limits of the NTL data: Because NTL capture
only a small share of overall reliability improvements (and because the largest effects are
contemporaneous), lagged impacts may be too small to detect. This may also indicate
that most of the reliability gains occur through non-lighting electricity consumption, such
as industrial production, agriculture, or air conditioning. However, I do not have data to
decompose these channels.

6.5. Robustness Checks

Throughout this paper, I use estimated solar generation because it allows me to credibly
isolate the exogenous variation in solar irradiance and compare results between the US
and India. This approach may raise some concerns about attenuation bias. In Appendix
D, I instrument for actual solar generation with estimated solar generation and show that
the results and magnitudes remain similar once corrected for attenuation bias. This is

31The model uses 35 covariates, including the state, year, month, quarter, day of week, average radiance,
and standard deviation at quarterly, annual, and overall levels, as well as residualized radiance, standard
deviations, and z-scores by week and quarter for each pixel and its four nearest neighbors.

32The ROC AUC score is 0.79.
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reasonable because the correlation between estimated and actual solar generation is close
to 1, as seen in Figure 6.33

In Appendix E, I present robustness checks using placebo tests and alternative model
specifications. First, I construct a placebo measure of solar generation at solar power plants
before they start operating. The results do not replicate and are not significant with placebo
generation, highlighting that the results in this paper are driven by solar generation. Second,
in Appendix E, I demonstrate that the results are robust to alternative specifications. The
main specification in this paper includes state–year fixed effects to hold installed capacity
constant and control for different states’ growth at different rates and year–month fixed
effects to control for seasonal variation. Appendix Table A8 shows that the results are
robust to the most extreme version of this specification, with state–year–month fixed effects,
which compares the impacts of solar generation within a state within each month of the
sample period. Similarly, the results are robust to a specification that includes each fixed
effect (state, year, and month) separately and other combinations of these fixed effects
that allow for greater variation. Finally, the main specification includes 7 lags to allow the
effects to propagate through a week — the typical horizon for electricity decision-making
in India. Appendix Table A9 shows that the results are robust to different time lags and
show a similar pattern across the different time lag specifications.

7. Discussion

I show that solar power provides an energy expansion and reduces power outages in India
by easing coal shortages. While India’s unique coal supply constraints are responsible for
the distinct lagged effects of solar generation, the finding that solar power leads to an
energy expansion is applicable to most developing countries that are growing at rates faster
than supply can keep up with. This implies that solar power can improve reliability by
reducing shortages in most developing countries facing fuel shortages. Accordingly, these
countries might not see cuts in emissions with incremental solar power.

The economics of solar power thus differs in developed and developing countries. The
physical constraints tied to the intermittency of solar power apply in both developed and
developing countries and may undermine electricity reliability in both these settings. How-
ever, an additional reliability concern from incremental solar power in developed countries
is that as solar fulfills an increasing share of electricity demand, it might lead to retirements
of less competitive fossil-fuel generators. This in turn might lead to power shortages on days
with insufficient solar resource. On the other hand, when solar leads to an energy expansion
— not an energy transition — in developing countries, then it ameliorates the issue of power

33The correlation is 0.9 for the US and 0.93 for India.
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shortages. Fossil fuel-generators are not yet being retired with incremental solar power in
such a setting, and hence the reliability concerns from insufficient power generation on low
solar resource days do not exist in the economics of solar power in developing countries.

8. Conclusion

Solar power is widely believed to reduce greenhouse gas emissions from the power sector.
However, with its rapid growth, concerns have emerged that this variable resource may
reduce reliability. I show that these dynamics diverge between developed and developing
countries. In India, solar power delivers a low-carbon energy expansion that improves
reliability but does not necessarily reduce emissions from existing fossil-fuel sources. These
results suggest a reliability-emissions tradeoff. Nonetheless, the gains in reliability are driven
by renewable energy, supporting a more sustainable path to development. Overall, solar
power can improve welfare in developing countries by increasing reliability. This contrasts
with the United States, where the primary welfare gains from solar are environmental.
Policymakers and researchers should account for these differences when evaluating solar
power in different contexts.

Future work analyzing the economics of renewable energy in developing countries would
be beneficial. That solar does not displace coal in India has implications for the political
economy of renewable energy in its electricity sector. Reducing shortages and increasing low-
cost solar supply also potentially reduces wholesale costs and prices in short-term electricity
markets, which might lower utilities’ incentives to ration electricity supply. Understanding
these broader implications from the energy expansion provided by low-carbon and low-cost
solar in developing countries is left for future research.
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Appendix A. Appendix Tables

table A1. Impacts of Solar Generation on Nonsolar Generation in ISO-New England

(1) (2) (3)

Non-Solar Gen (EIA) Non-Solar Gen (ISO-NE) Non-solar (ISO-NE)

VARIABLES Solar Gen estimated Solar Gen estimated Solar Gen (ISO-NE)

Solar Generation -0.99** -0.90** -1.44***

(0.38) (0.37) (0.22)

Solar Generation (t-1) 0.07 0.13 -0.19

(0.31) (0.29) (0.17)

Solar Generation (t-2) -0.13 -0.15 -0.30**

(0.25) (0.25) (0.13)

Solar Generation (t-3) -0.35 -0.27 -0.18

(0.23) (0.22) (0.15)

Solar Generation (t-4) 0.37 0.33 0.07

(0.31) (0.28) (0.16)

Solar Generation (t-5) 0.13 0.16 0.12

(0.30) (0.30) (0.16)

Solar Generation (t-6) 0.12 0.08 0.13

(0.25) (0.24) (0.15)

Solar Generation (t-7) -0.17 -0.14 0.05

(0.27) (0.27) (0.16)

Observations 2,185 2,185 2,185

R-squared 0.84 0.84 0.85

Robust standard errors in parentheses

*** p<0.01, ** p<0.05, * p<0.1

The regression includes year × month fixed effects and current and lagged controls for average flux, cooling
degree days, heating degree days, and dummies for whether it is a cooling degree day or a heating degree
day. Standard errors are clustered at the year × month level. Electricity generation data come from EIA
930 Reports, ISO-NE Operational Reports, and estimated solar generation from Global Energy Monitor
and ERA5 Reanalysis Dataset. Columns 1 and 2 report results from estimated solar generation on nonsolar
generation reported in the EIA reports and ISO-NE reports respectively. Column 3 reports the effects of
actual solar generation on nonsolar generation from ISO-NE reports.
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table A2. Impacts of Solar Electricity Generation on Nonsolar Electricity Generation in
India

(1) (2)

VARIABLES Non-solar Generation Non-solar Generation

Solar Generation 0.01 0.14

(0.07) (0.09)

Solar Generation (t-1) 0.23***

(0.06)

Solar Generation (t-2) 0.15***

(0.05)

Solar Generation (t-3) 0.14***

(0.04)

Solar Generation (t-4) 0.07*

(0.04)

Solar Generation (t-5) 0.04

(0.03)

Solar Generation (t-6) -0.03

(0.03)

Solar Generation (t-7) -0.05

(0.07)

Average Solar Gen (last 7 days) 0.43*

(0.26)

Observations 59,580 59,580

R-squared 0.97 0.97

Solar gen mean 456 456

Dep. var. mean 6363 6363

Test lag + current = 0 .0847 .0847

Robust standard errors in parentheses

*** p<0.01, ** p<0.05, * p<0.1

The regression includes year × month fixed effects, state × year fixed effects, powerplant fixed effects and
current and lagged controls for average flux, cooling degree days, heating degree days, and dummies for
whether it is a cooling degree day or a heating degree day. Standard errors are clustered at the state × year
level. Column 1 plots the coefficients on current solar generation and generation each day over the past
week as in regression (3). Column 2 plots the coefficient on current solar generation and on average solar

generation over the past week (∑
t−1
j=t−7 solar generationj

7 ).
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table A3. Impacts of Solar Generation on Non-Solar Generation by Fuel Type

(1) (2) (3) (4) (5) (6)

VARIABLES Coal gen Gas gen Hydro gen Coal gen Gas gen Hydro gen

Solar Generation (MWh) -0.02 0.01 0.03 0.07 0.02 0.07***

(0.06) (0.01) (0.02) (0.08) (0.01) (0.02)

Solar Generation (t-1) 0.20*** 0.01** 0.03**

(0.06) (0.00) (0.01)

Solar Generation (t-2) 0.13*** 0.00 0.02

(0.04) (0.00) (0.01)

Solar Generation (t-3) 0.13*** 0.00 0.01

(0.03) (0.00) (0.01)

Solar Generation (t-4) 0.10** 0.00 -0.03***

(0.04) (0.00) (0.01)

Solar Generation (t-5) 0.07** -0.00 -0.03***

(0.03) (0.00) (0.01)

Solar Generation (t-6) -0.01 -0.00 -0.02**

(0.02) (0.00) (0.01)

Solar Generation (t-7) 0.03 0.01 -0.09***

(0.07) (0.01) (0.02)

Average Solar Gen (last 7 days) 0.56** 0.03 -0.15***

(0.24) (0.03) (0.04)

Observations 59,580 59,580 59,580 59,580 59,580 59,580

R-squared 0.97 0.83 0.82 0.97 0.83 0.82

Solar gen mean 456 456 456 456 456 456

Dep. var. mean 5406 182 559 5406 182 559

Test lag + current = 0 .0325 .2485 .1062 .03 .25 .12

Robust standard errors in parentheses

*** p<0.01, ** p<0.05, * p<0.1

The regression includes year × month fixed effects, state × year fixed effects, and current and lagged controls
for average flux, cooling degree days, heating degree days, and dummies for whether it is a cooling degree
day or a heating degree day. Standard errors are clustered at the state × year level. Columns 1-3 plot
the coefficients on current solar generation and generation each day over the past week for the respective
fuels as in regression (3). Columns 4-6 plot the coefficients on current solar generation and average solar
generation over the past week.
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table A4. Impacts of Solar Generation on Powerplant-level generation, by Fuel Type

(1) (2) (3) (4) (5) (6)

VARIABLES Coal Gen Coal Gen Gas Gen Gas Gen Hydro Gen Hydro Gen

Solar generation (MW) -0.0101** -0.0072 0.0010 0.0013 0.0012 0.0054**

(0.0039) (0.0051) (0.0023) (0.0023) (0.0020) (0.0025)

Solar Generation (t-1) 0.0076* -0.0003 0.0033**

(0.0041) (0.0012) (0.0015)

Solar Generation (t-2) 0.0069** -0.0020** 0.0017*

(0.0033) (0.0009) (0.0010)

Solar Generation (t-3) 0.0085*** -0.0010 0.0004

(0.0027) (0.0008) (0.0011)

Solar Generation (t-4) 0.0070** -0.0008 -0.0025***

(0.0034) (0.0008) (0.0009)

Solar Generation (t-5) 0.0042 -0.0016* -0.0035***

(0.0026) (0.0009) (0.0011)

Solar Generation (t-6) -0.0010 -0.0020*** -0.0008

(0.0020) (0.0007) (0.0008)

Solar Generation (t-7) 0.0016 0.0004 -0.0101***

(0.0059) (0.0020) (0.0023)

Average Solar Gen (last 7 days) 0.0322* -0.0077 -0.0150**

(0.0190) (0.0048) (0.0062)

Observations 509,688 509,688 165,060 165,060 463,672 463,672

R-squared 0.8630 0.8630 0.6941 0.6941 0.6161 0.6160

Solar gen mean 624 624 754 754 545 545

Dep. var. mean 628 628 65 65.2 71 71.3

Test lag + current = 0 .2316 .23 .3188 .31 .1691 .2

Robust standard errors in parentheses

*** p<0.01, ** p<0.05, * p<0.1

S*Y FE, Y*M FE, Powerplant FE, Lagged temperature and flux

standard errors clustered at the state × year level

The regression includes year × month fixed effects, state × year fixed effects control, and powerplant fixed
effects. Controls include a dummy for whether it is a weekend and current and lagged daily temperature
and average flux for the past week. Temperature controls include cooling degree days, heating degree days,
and a dummy for whether it is a cooling degree day or a heating degree day. Standard errors are clustered at
the state × year level. Columns 1, 3, and 5 plot the coefficients on current solar generation and generation
each day over the past week for the respective fuels. Columns 2, 4, and 6 plot the coefficients on current
solar generation and average solar generation over the past week.
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table A5. Impacts of Solar Electricity Generation on Coal Stocks in India

(1) (2)

Coal Gen ∆ coal stocks

VARIABLES MW tonnes

Solar Generation (t-7) 0.00 -0.65

(0.01) (0.69)

Solar Generation (t-6) -0.00 -0.33

(0.00) (0.27)

Solar Generation (t-5) 0.00 -0.00

(0.00) (0.24)

Solar Generation (t-4) 0.01** -0.27

(0.00) (0.21)

Solar Generation (t-3) 0.01*** 0.39**

(0.00) (0.16)

Solar Generation (t-2) 0.01** 0.58**

(0.00) (0.28)

Solar Generation (t-1) 0.01 1.50

(0.00) (1.00)

Solar generation (MW) -0.01***

(0.00)

Observations 312,394 312,394

R-squared 0.87 0.05

Solar gen mean 650 650

Dep. var. mean 744 715.6

Test lag + current = 0 .1775

Test lag sum = 0 .1769

Robust standard errors in parentheses

*** p<0.01, ** p<0.05, * p<0.1

The regression includes year × month fixed effects, state × year fixed effects, powerplant fixed effects and
current and lagged controls for average flux, cooling degree days, heating degree days, and dummies for
whether it is a cooling degree day or a heating degree day. Standard errors are clustered at the state ×
year level. Column 1 plots the coefficients of the impacts of solar generation on coal electricity generation.
Column 2 plots the coefficients of the impacts of solar generation on weekly changes in coal stocks.
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Appendix B. Appendix Figures
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figure A1. US: Impacts of Actual and Estimated Solar Generation on Non-Solar Generation

This figure plots the effects of actual and estimated solar generation on non-solar generation in ISO-New
England in the US. The regression includes year × month fixed effects and current and lagged controls for
average flux, cooling degree days, heating degree days, and dummies for whether it is a cooling degree day
or a heating degree day. Standard errors are clustered at the year × month level.
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figure A2. India: Impacts of Actual and Estimated Solar Generation on Non-Solar
Generation

This figure plots the coefficients of actual and estimated daily solar generation from t −7 days to the current
day t on nonsolar generation at the state level in India. The regression includes year–month fixed effects,
state–year fixed effects and current and lagged controls for average flux, cooling degree days, heating degree
days, and dummies for whether it is a cooling degree day or a heating degree day. Standard errors are
clustered at the state × year level
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figure A3. Impacts of Solar Power on Electricity Demand Met

This figure plots the coefficients of daily solar generation from t − 7 days to the current day t on electricity
demand met at the state level in India. The regression includes year–month fixed effects, state–year fixed
effects and current and lagged controls for average flux, cooling degree days, heating degree days, and
dummies for whether it is a cooling degree day or a heating degree day. Standard errors are clustered at
the state–year level.
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figure A4. Distribution of days of stock by coal-constrained powerplants

Days of available stock at powerplants are estimated based on the average coal consumption at powerplants
and their daily levels of stock availability.
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Appendix C. Constructing the Measure of Outages using Night Lights
Data

I compare outages recorded by electricity supply monitors in specific locations with corre-
sponding pixel-level nighttime lights (NTL) data to construct a measure of outages from
NTL. I obtain monitor readings from the Electricity Supply Monitoring Initiative (ESMI)
of the Prayas Energy Group (PEG) .34 PEG installed 528 monitors in households, farms,
and commercial establishments across 22 states and union territories in India. These devices
collected minute-wise voltage readings between 2014 and 2018.35

Ideally, the outages recorded by ESMI would be compared directly with NTL radiance
at the exact monitor location. However, PEG does not disclose precise coordinates for the
installed monitors. Instead, they provide information on the type of location (domestic,
commercial, or agricultural), its neighborhood, and the district and state. Using these
details, I approximate each monitor’s location. Because outages often occur at the neigh-
borhood level, knowing the approximate neighborhood is sufficient: if one location in a
neighborhood experiences an outage, others nearby likely do as well. Figure A5 shows the
approximate monitor locations.

C.1. Summary Statistics

Table A6 reports summary statistics on outages recorded by ESMI monitors and on NTL ra-
diance for the corresponding pixels. PEG classifies locations from most rural to most urban:
villages, municipalities, districts, and urban areas. This ordering aligns with average radiance
values for the corresponding pixels—more urban locations are brighter. Outages also follow
this pattern: both frequency and duration of outages decline as locations become more urban.

C.2. Nighttime lights and monitor readings

I compare outages recorded by ESMI monitors with NTL readings for the corresponding
pixels to test whether NTL can capture outages. I train a random forest algorithm on 35
covariates, including state, year, month, quarter, day of week, average radiance, and its
standard deviation at quarterly, annual, and overall levels. The model also uses residualized
radiance, standard deviations and z-scores by week, quarter, and overall for each pixel and
its four nearest neighbors. The algorithm is trained on about half of the sample of about

34More details about the ESMI initiative can be found here.
35Not all monitors collected data throughout 2014–2018; most were active for only part of the period.
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figure A5. Monitor locations across India

This figure plots the approximate location of the Electricity Supply Monitoring Initiative (ESMI) monitors
tracking power outages in India.

92,000 observations and evaluated on the other half.

Figure A6 shows the evaluation of the prediction exercise. I classify a monitor as under
daily outage if its total outage duration during the day is greater than the average outage
duration per day. Each dot represents a pixel-monitor-day prediction. Green dots indicate
correct outage predictions; grey dots indicate correct no-outage predictions. Blue dots are
false negatives (an outage occurred but was not predicted), and red dots are false positives
(an outage was predicted but did not occur). Overall, the algorithm predicted 78% of cases
correctly and identified 77% of all outages. Thus, while using NTL to predict outages is not
a perfect measure, it provides a useful proxy for identifying daily outages at the regional level.
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table A6. Summary statistics for ground-truth data

Summary Statistics by Location Category

Outage Frequency Outage Duration Radiance
N Locations Mean SD Mean SD Mean SD P25 P75

Village 29,601 198 0.16 0.36 4.8 5.5 4.6 8.7 0.8 4.4
Municipality 12,963 65 0.07 0.25 2.0 3.4 17.9 20.5 5.2 22.3
District 33,036 159 0.04 0.20 1.0 2.7 28.1 19.6 13.8 38.0
Urban 22,207 105 0.04 0.20 0.4 1.9 43.6 26.5 25.7 56.9

Outage data come from monitor readings collected by the Electricity Supply Monitoring Initiative by the
Prayas Energy Group. Nighttime lights data are daily VIIRS radiance.

figure A6. Validating outage predictions using electricity supply monitor readings

This figure plots evaluates the random forest algorithm used to predict whether a pixel is under outage.
Each dot is a pixel-day-monitor reading. Green dots represent outages that are correctly classified, red dots
are false positives, blue dots are false negatives, and grey dots are true negatives.
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Appendix D. Instrumenting Actual Solar Generation with Estimated
Solar Generation

In my paper, I rely on estimated solar generation for analysis because it allows me to
credibly isolate exogenous variation in solar irradiance and produce comparable analysis
for the US and India. However, estimated solar generation is vulnerable to attenuation
bias. While attenuation bias is likely minimal in this analysis because the correlation
between estimated and actual solar generation is close to 1, I use an instrumental variables
(IV) approach to confirm that the results are similar while correcting for attenuation bias.
Equations (A1) and (A2) outline the IV approach, wherein I instrument for actual solar
generation using estimated solar generation. Table A7 presents the first stage, which is
very strong, as expected since estimated solar generation is simply a proxy for actual solar
generation. Figures A7-A11 denote the results in the paper using the IV specification.

Full model:

Yst = α0 +β0 actual_solar_generationst +
t−1
∑

j=t−7
β j actual_solar_generations j + κ′Xst + ρs y + δym + εst

(A1)

First stage:

actual_solar_generationst = γ0 + π0 estimated_solar_generationst

+
t−1
∑

j=t−7
π j estimated_solar_generations j +ψ′Xst + λs y + τym + ϵst(A2)
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table A7. First-Stage Results

(1) (2) (3) (4)

US US India India

VARIABLES Actual Solar Actual Solar Actual Solar Actual Solar

Estimated Solar Generation 1.08*** 1.18*** 0.91*** 0.56***

(0.01) (0.04) (0.00) (0.04)

Weekend 32.13 -10.71

(68.71) (16.04)

Irradiance -84.80 192.42***

(71.55) (68.74)

CDD -22.91 -70.03***

(33.35) (25.31)

HDD -11.39 65.13***

(12.99) (23.78)

Degree day -226.04 181.44

(185.03) (118.57)

Observations 2,192 2,192 48,447 48,447

R-squared 0.94 0.93 0.94 0.98

Y × M FE N Y N Y

S × Y FE N Y

Robust standard errors in parentheses

*** p<0.01, ** p<0.05, * p<0.1

Daily solar electricity generation estimated using the product of installed capacity data from the Global
Energy Monitor and flux at the point located closest to each powerplant compiled from ERA5 Reanalaysis
Dataset.
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figure A7. Impacts of Solar Generation on Non-Solar Generation in ISO-New England
(US)
Instrumenting for Actual Solar Generation with Estimated Solar Generation

This figure plots results from a two-stage least squares regression, where I instrument for actual solar
generation using estimated solar generation. The regression that includes year × month fixed effects. Controls
include a dummy for whether it is a weekend and current and lagged daily temperature and average flux
for the past week. Temperature controls include cooling degree days, heating degree days, and a dummy
for whether it is a cooling degree day or a heating degree day. Standard errors are clustered at the year ×
month level.
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figure A8. Impacts of Solar Generation on Non-Solar Generation in India and the US
Instrumenting for Actual Solar Generation with Estimated Solar Generation

This figure plots results from a two-stage least squares regression, where I instrument for actual solar
generation using estimated solar generation. The regressions include year × month fixed effects and current
and lagged controls for average flux, cooling degree days, heating degree days, and dummies for whether it
is a cooling degree day or a heating degree day. The regression for India also includes state × year fixed
effects, whereas the regression for IS-NE includes year fixed effects since it is only one region. The regression
for India is clustered at the state × year level, whereas the regression for the US is clustered at the year ×
month level to increase the number of clusters.
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figure A9. Impacts of Solar Generation on Powerplant-level Generation: by Fuel
Instrumenting for Actual Solar Generation with Estimated Solar Generation

This figure plots results from a two-stage least squares regression, where I instrument for actual solar
generation using estimated solar generation. The regression includes year × month, state × year, and
powerplant fixed effects and current and lagged controls for average flux, cooling degree days, heating
degree days, and dummies for whether it is a cooling degree day or a heating degree day. Standard errors
are clustered at the state × year level.
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figure A10. Impacts of Solar Generation on Coal Stocks at Powerplants
Instrumenting for Actual Solar Generation with Estimated Solar Generation

This figure plots results from a two-stage least squares regression, where I instrument for actual solar
generation using estimated solar generation. The regression includes year × month, state × year, and
powerplant fixed effects and current and lagged controls for average flux, cooling degree days, heating
degree days, and dummies for whether it is a cooling degree day or a heating degree day. Standard errors
are clustered at the state × year level.
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figure A11. Impacts of Solar Generation on Share of Pixels under Outage
Instrumenting for Actual Solar Generation with Estimated Solar Generation

This figure plots results from a two-stage least squares regression, where I instrument for actual solar
generation using estimated solar generation. The regression includes year × month and state × year,fixed
effects and current and lagged controls for average flux, cooling degree days, heating degree days, and
dummies for whether it is a cooling degree day or a heating degree day. Standard errors are clustered at
the state × year level.
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Appendix E. Robustness Checks

E.1. Placebo tests

I construct a placebo measure of estimated solar electricity generation at solar powerplants
before they start operating. I use the same method for constructing estimated solar genera-
tion using daily irradiance and capacity as in (1), but it serves as a placebo since this is
estimated generation before powerplants start operating and feeding electricity into the
grid. If the results are driven by solar electricity generation, then we would not see any
significant effects on placebo generation since the powerplants are not actually operating
in the placebo. This placebo test ensures that the results are not driven by some endoge-
nous variables tied to the location of powerplants and the irradiance received by this location.

Yst = α0 +β0 solar_generationst +
t−1
∑

j=t−7
β j solar_generations j

+ γ0 placebo_solar_generation +
t−1
∑

j=t−7
γ j placebo_solar_generations j

+ κ′Xst +αs y +αym + εst(A3)

I run the same analysis as equation (3), but now also add placebo solar generation
to the analysis (equation (A3)). solar_generation denotes the actual solar generation at
powerplants that are currently operating on date t , whereas placebo_solar_generation
includes estimated solar generation at powerplants that are not operating on date t , but
will start operating at some future date τ > t . In include both actual and placebo solar
generation since they might be correlated and excluding actual solar generation may lead
to omitted variable bias in the γ coefficients on placebo generation. All other controls are
the same as the previous analysis in (3).

If the results are driven by solar generation and not some other factor endogenous
to the location of solar powerplants and the irradiance received at these locations, then
γ = 0 for γ ∈ (0, 7). Further, γs ≠ βs for any s ∈ (0, 7). Figure A12 plots the coefficients
on current and lagged placebo solar generation and actual solar generation. Unlike actual
solar generation, lagged placebo solar generation has no significant impacts on non-solar
generation, providing further support to the conclusion that the effects are driven by solar
electricity generation.

The negative coefficients on current placebo solar generation and a week ago (t − 7) are
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figure A12. Placebo test for solar generation (2020-2023)

The sample in this figure excludes the first and the last full years of data because by construction, these
years would have no placebo generation or actual solar generation. This figure plots the coefficients of daily
actual solar electricity generation and placebo solar generation each day from t − 7 days to the current day
t on non-solar generation in India. Placebo generation represents the generation at powerplants before they
start operating. The regression includes year × month fixed effects, state × year fixed effects, and current
and lagged controls for average flux, cooling degree days, heating degree days, and dummies for whether it
is a cooling degree day or a heating degree day. Standard errors are clustered at the state × year level.

surprising. One potential explanation is that the placebo measure is imperfect. The data on
solar powerplants are discrete at the annual level. This implies that the operating start date
is an imprecise measure and depending on the idiosyncratic reporting decision, a plant that
starts operating in the middle of a year may appar as operating for some period when its
still not operating, or may appear as inoperable for some period when it is in fact operating.
If the former is true, it would bias the main result towards zero, implying that the current
results are a lower bound on the actual impact of solar generation. If the latter is true,
then the placebo generation measure might include some actual generation as well. Further,
there might be some impacts of solar generation in the run up to full-fledged operation as
the powerplant sets up its operations. These factors may explain the negative coefficients.
Nonetheless, the negative coefficients on placebo generation reinforce the finding that the
positive impacts of lagged solar generation are indeed driven by actual solar electricity
generation.
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E.2. Alternate fixed effects specifications

The main specification in this paper includes state × year and year × month fixed effects.
This is my preferred specification because it controls for all the important endogenous
factors: state × year fixed effects control for different states growing at different rates and
allow us to hold installed solar farm capacity constant and isolate changes in solar electricity
generation driven by changes in solar irradiance because solar farm capacity changes at the
state-year level in the data. Year month fixed effects help control for seasonal variation in
demand effects and the impacts of seasonality on electricity supply.

Nonetheless, Table A8 shows that the results are not sensitive to the chosen specification
and the findings hold across different fixed effects specifications. Column 2 shows results
with state × year × month fixed effects, which is the most extreme version of the fixed effects.
Using this specification, we compare impacts of changes in solar electricity generation driven
by solar irradiance within a month, within a state, within a year. Column 3 controls only for
month fixed effects instead of year-by-month fixed effects, allowing for averages in weather
conditions across years. Column 4 controls for state fixed effects instead of state-by-year
fixed effects. Finally, column 5 has the least restrictive controls with separate state, year,
and month fixed effects respectively. The coefficients are roughly of similar magnitude
across these specifications and hence the results are robust to the choice of specification.
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table A8. Robustness to alternate specifications

Non-solar Generation

(1) (2) (3) (4) (5)

VARIABLES Main spec. S ×Y ×M S ×Y +M S + Y ×M S + Y + M

Solar Generation (MWh) 0.01 0.09 0.01 -0.05 -0.05

(0.07) (0.07) (0.07) (0.05) (0.05)

Solar Generation (t-1) 0.23*** 0.28*** 0.23*** 0.21*** 0.21***

(0.06) (0.06) (0.06) (0.05) (0.05)

Solar Generation (t-2) 0.15*** 0.18*** 0.15*** 0.13*** 0.13***

(0.05) (0.05) (0.05) (0.03) (0.03)

Solar Generation (t-3) 0.14*** 0.18*** 0.14*** 0.12*** 0.11***

(0.04) (0.04) (0.04) (0.02) (0.02)

Solar Generation (t-4) 0.07* 0.14*** 0.08** 0.05** 0.05**

(0.04) (0.04) (0.04) (0.03) (0.03)

Solar Generation (t-5) 0.04 0.10*** 0.05 0.02 0.02

(0.03) (0.03) (0.03) (0.02) (0.02)

Solar Generation (t-6) -0.03 0.03 -0.03 -0.05** -0.05**

(0.03) (0.02) (0.02) (0.02) (0.02)

Solar Generation (t-7) -0.05 0.14** -0.03 -0.12** -0.10*

(0.07) (0.05) (0.08) (0.05) (0.05)

Observations 59,580 59,580 59,580 59,580 59,580

R-squared 0.97 0.99 0.96 0.94 0.94

FE S ×Y +Y ×M S ×Y ×M S ×Y +M S + Y ×M S + Y + M

Robust standard errors in parentheses

*** p<0.01, ** p<0.05, * p<0.1

Lagged temperature and flux

standard errors clustered at the state × year level

Daily solar electricity generation estimated using the product of installed capacity data from the Global
Energy Monitor and flux at the point located closest to each powerplant compiled from ERA5 Reanalaysis
Dataset.The regression includes year × month fixed effects and current and lagged controls for average flux,
cooling degree days, and dummies for whether it is a cooling degree day or a heating degree day.
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E.3. Alternate time lags

table A9. Robustness to alternate lags: Non solar generation

(1) (2) (3) (4) (5) (6)

VARIABLES Lag 1 Lag 2 Lag 3 Lag 4 Lag 5 Lag 6

Solar Generation (MWh) 0.05 0.03 0.01 -0.00 -0.00 0.00

(0.11) (0.10) (0.09) (0.08) (0.08) (0.07)

Solar Generation (t-1) 0.47*** 0.23*** 0.23*** 0.23*** 0.23*** 0.23***

(0.17) (0.07) (0.07) (0.07) (0.07) (0.06)

Solar Generation (t-2) 0.29** 0.14*** 0.14** 0.14*** 0.15***

(0.14) (0.05) (0.06) (0.06) (0.05)

Solar Generation (t-3) 0.19 0.13*** 0.13*** 0.13***

(0.11) (0.04) (0.04) (0.04)

Solar Generation (t-4) 0.07 0.08* 0.07*

(0.09) (0.04) (0.04)

Solar Generation (t-5) -0.01 0.04

(0.09) (0.03)

Solar Generation (t-6) -0.07

(0.08)

Observations 59,580 59,580 59,580 59,580 59,580 59,580

R-squared 0.97 0.97 0.97 0.97 0.97 0.97

Solar gen mean 456 456 456 456 456 456

Dep. var. mean 6363 6363 6363 6363 6363 6363

Test lag + current = 0 .0625 .0628 .0648 .069 .0741 .0799

Robust standard errors in parentheses

*** p<0.01, ** p<0.05, * p<0.1

Daily solar electricity generation estimated using the product of installed capacity data from the Global
Energy Monitor and flux at the point located closest to each powerplant compiled from ERA5 Reanalaysis
Dataset.The regression includes year × month fixed effects and current and lagged controls for average flux,
cooling degree days, and dummies for whether it is a cooling degree day or a heating degree day.
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